ニューラルネットワークとイルミネーションプランニングを用いた濃淡画像からの曲面の分類

福井 真二  岩堀 祐之  ロバート J.  ウッダム  岩田 彰  

誌名
電子情報通信学会論文誌 D   Vol.J83-D2   No.2   pp.610-622
発行日: 2000/02/25
Online ISSN: 
DOI: 
Print ISSN: 0915-1923
論文種別: 論文
専門分野: 画像処理,画像パターン認識
キーワード: 
物理ベースビジョン,  照度差ステレオ,  曲率,  RBFニューラルネット,  主成分分析,  イルミネーションプランニング,  

本文: PDF(2.5MB)>>
論文を購入




あらまし: 
本論文ではニューラルネットワークとイルミネーションプランニングを用いて複数枚の濃淡画像から対象物体の局所的な曲面の曲率符号を復元する新しい手法を提案している.光源方向が互いに近い場合において,球の各点の画像濃度の分布を主成分分析による特徴抽出と次元圧縮の変換を行った後,変換後の情報と座標の関係を,RBFニューラルネットワークを用いて学習する.曲率の特徴は6種類存在し,それらは,テスト物体の濃淡画像上の任意の点の近傍4点をそれらの点と同じ画像濃度をもつ球上の点にニューラルネットを用いて写像したときに,各々の曲率の種類に依存して写像されるパターンの特徴を利用して,ガウス曲率の符号のみならず,濃淡画像から直接的に6種類の曲面に分類を行うことができる.提案する手法はイルミネーションプランニングによりテスト物体の各点ごとにcast shadowを生じない光源の組合せを考えて,3光源照度差ステレオの問題であるcast shadow領域を取り除くことができるとともに,よりロバストな結果を得ることが可能である.本方法では,複数光源の光源方向の情報を既知とせず,かつ,面の反射特性に対する何らかの関数を仮定することなく,物理的な入出力の関係をニューラルネットワークによって直接学習し,高次のノンパラメトリック関数近似を行う照度差ステレオを採用している.本手法を計算機実験により検証・評価を行うとともに,その有効性を確認した.