ニューラルネットワークの耐最悪故障化学習

西垣 正勝  都筑 輝泰  曽我 正和  

誌名
電子情報通信学会論文誌 D   Vol.J83-D1   No.1   pp.203-214
発行日: 2000/01/25
Online ISSN: 
DOI: 
Print ISSN: 0915-1915
論文種別: 論文
専門分野: フォールトトレランス
キーワード: 
耐故障性,  最悪故障,  汎化能力,  階層型ニューラルネットワーク,  誤差逆伝搬学習,  

本文: PDF(601.1KB)>>
論文を購入




あらまし: 
ニューラルネットワークを利用することにより,フォールトトレラント回路を効率良く実現することを目的とする.故障の範囲としては,中間層-出力層間の単一断線故障を想定する.本論文では,通常の誤差逆伝搬アルゴリズムを用いて各学習セットに対する 最悪故障時の出力を教師信号に一致させることにより耐故障性を獲得する「耐最悪故障化学習」アルゴリズムを提案する.シミュレーションを通じ,本学習方式の学習効率,及び,本学習方式により得られる耐故障ニューラルネットワークの耐故障強度を評価し,良好な結果を得た.また,本学習方式がニューラルネットワークの汎化能力をも向上させることについても報告する.