|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Experimental Study on Embedded Object Imaging Method with Range Point Suppression of Creeping Wave for UWB Radars
Toshiki MANAKA Shouhei KIDERA Tetsuo KIRIMOTO
Publication
IEICE TRANSACTIONS on Electronics
Vol.E99-C
No.1
pp.138-142 Publication Date: 2016/01/01 Online ISSN: 1745-1353
DOI: 10.1587/transele.E99.C.138 Type of Manuscript: BRIEF PAPER Category: Electromagnetic Theory Keyword: UWB radars, range points migration (RPM), dielectric constant estimation, non-destructive testing, internal imaging,
Full Text: PDF>>
Summary:
Ultra-wideband radar exhibits high range resolution, and excellent capability for penetrating dielectric media, especially when using lower frequency microwaves. Thus, it has a great potential for innovative non-destructive testing of aging roads or bridges or for non-invasive medical imaging applications. In this context, we have already proposed an accurate dielectric constant estimation method for a homogeneous dielectric medium, based on a geometrical optics (GO) approximation, where the dielectric boundary points and their normal vectors are directly reproduced using the range point migration (RPM) method. In addition, to compensate for the estimation error incurred by the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated. This paper shows the experimental validation of this method, where a new approach for suppressing the creeping wave along the dielectric boundary is also introduced. The results from real observation data validate the effectiveness of the proposed method in terms of highly accurate dielectric constant estimation and embedded object boundary reconstruction.
|
|
|