
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Fast Estimation of Field in the Shadow Zone for Finite Cylindrical Structures by Modified Edge Representation (MER) in Compact Range Communication
Maifuz ALI Makoto ANDO
Publication
IEICE TRANSACTIONS on Communications
Vol.E99B
No.7
pp.15411549 Publication Date: 2016/07/01
Online ISSN: 17451345
DOI: 10.1587/transcom.2015EBP3405
Type of Manuscript: PAPER Category: Antennas and Propagation Keyword: circular plate, cylinder, compact range communication, equivalent edge currents (EECs), Fresnel zone number, millimeter wave, modified edge representation (MER),
Full Text: PDF(5MB)>>
Summary:
The 60 GHz band compactrange communication is very promising for shorttime, short distance communication. Unfortunately, due to the short wavelengths in this frequency band the shadowing effects caused by human bodies, furniture, etc are severe and need to be modeled properly. The numerical methods like the finitedifference timedomain method (FDTD), the finiteelement method (FEM), the method of moments (MoM) are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Raybased approaches like the geometrical theory of diffraction (GTD), uniform geometrical theory of diffraction (UTD), uniform asymptotic theory of diffraction (UAT) are effective and popular solutions but suffer from computation of cornerdiffracted field, field at the caustics. Fresnel zone number (FZN) adopted modified edge representation (MER) equivalent edge current (EEC) is an accurate and fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts distances, rather than the angles used in GTD, UTD or UAT but still provides uniform and highly accurate fields everywhere including geometrical boundaries. Previous work verified this method for planar scatterers. In this work, FZN MER EEC is used to compute field distribution in the millimeterwave compact range communication in the presence of three dimensional scatterers, where shadowing effects rather than multipath dominate the radio environments. First, circular cylinder is disintegrated into rectangular plate and circular disks and then FZN MER is applied along with geodesic path loss. The dipole wave scattering from perfectly conducting circular cylinder is discussed as numerical examples.

