|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
A Multi-Scenario High-Level Synthesis Algorithm for Variation-Tolerant Floorplan-Driven Design
Koki IGAWA Masao YANAGISAWA Nozomu TOGAWA
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E99-A
No.7
pp.1278-1293 Publication Date: 2016/07/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E99.A.1278 Type of Manuscript: Special Section PAPER (Special Section on Design Methodologies for System on a Chip) Category: Keyword: high-level synthesis, process variation, interconnection delay, distributed-register architecture, scenario,
Full Text: PDF>>
Summary:
In order to tackle a process-variation problem, we can define several scenarios, each of which corresponds to a particular LSI behavior, such as a typical-case scenario and a worst-case scenario. By designing a single LSI chip which realizes multiple scenarios simultaneously, we can have a process-variation-tolerant LSI chip. In this paper, we propose a multi-scenario high-level synthesis algorithm for variation-tolerant floorplan-driven design targeting new distributed-register architectures, called HDR architectures. We assume two scenarios, a typical-case scenario and a worst-case scenario, and realize them onto a single chip. We first schedule/bind each of the scenarios independently. After that, we commonize the scheduling/binding results for the typical-case and worst-case scenarios and thus generate a commonized area-minimized floorplan result. At that time, we can explicitly take into account interconnection delays by using distributed-register architectures. Experimental results show that our algorithm reduces the latency of the typical-case scenario by up to 50% without increasing the latency of the worst-case scenario, compared with several existing methods.
|
|
|