|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Low Complexity Millimeter-Wave LOS-MIMO Systems with Uniform Circular Arrays for Small Cells Wireless Backhaul
Liang ZHOU Yoji OHASHI Makoto YOSHIDA
Publication
IEICE TRANSACTIONS on Communications
Vol.E98-B
No.11
pp.2348-2358 Publication Date: 2015/11/01 Online ISSN: 1745-1345
DOI: 10.1587/transcom.E98.B.2348 Type of Manuscript: PAPER Category: Wireless Communication Technologies Keyword: channel capacity, BER, LOS-MIMO, millimeter-wave, precoding, spatial interleaver, 5G, small cells, wireless backhaul, uniform circular arrays (UCAs),
Full Text: PDF>>
Summary:
The dramatic growth in wireless data traffic has triggered the investigation of fifth generation (5G) wireless communication systems. Small cells will play a very important role in 5G to meet the 5G requirements in spectral efficiency, energy savings, etc. In this paper, we investigate low complexity millimeter-wave communication systems with uniform circular arrays (UCAs) in line-of-sight (LOS) multiple-input multiple-output (MIMO) channels, which are used in fixed wireless access such as small cell wireless backhaul for 5G. First, we demonstrate that the MIMO channel matrices for UCAs in LOS-MIMO channels are circulant matrices. Next, we provide a detailed derivation of the unified optimal antenna placement which makes MIMO channel matrices orthogonal for 3×3 and 4×4 UCAs in LOS channels. We also derive simple analytical expressions of eigenvalues and capacity as a function of array design (link range and array diameters) for the concerned systems. Finally, based on the properties of circulant matrices, we propose a high performance low complexity LOS-MIMO precoding system that combines forward error correction (FEC) codes and spatial interleaver with the fixed IDFT precoding matrix. The proposed precoding system for UCAs does not require the channel knowledge for estimating the precoding matrix at the transmitter under the LOS condition, since the channel matrices are circulant ones for UCAs. Simulation results show that the proposed low complexity system is robust to various link ranges and can attain excellent performance in strong LOS environments and channel estimation errors.
|
|
|