|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Texture Representation via Joint Statistics of Local Quantized Patterns
Tiecheng SONG Linfeng XU Chao HUANG Bing LUO
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E97-D
No.1
pp.155-159 Publication Date: 2014/01/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E97.D.155 Print ISSN: 0916-8532 Type of Manuscript: LETTER Category: Image Recognition, Computer Vision Keyword: texture classification, Local Binary Patterns (LBP), Gaussian derivative filter, ternary coding,
Full Text: PDF(1.2MB)>>
Summary:
In this paper, a simple yet efficient texture representation is proposed for texture classification by exploring the joint statistics of local quantized patterns (jsLQP). In order to combine information of different domains, the Gaussian derivative filters are first employed to obtain the multi-scale gradient responses. Then, three feature maps are generated by encoding the local quantized binary and ternary patterns in the image space and the gradient space. Finally, these feature maps are hybridly encoded, and their joint histogram is used as the final texture representation. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art LBP based and even learning based methods for texture classification.
|
|