|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Semi-Supervised Nonparametric Discriminant Analysis
Xianglei XING Sidan DU Hua JIANG
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E96-D
No.2
pp.375-378 Publication Date: 2013/02/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E96.D.375 Print ISSN: 0916-8532 Type of Manuscript: LETTER Category: Pattern Recognition Keyword: semi-supervised learning, nonparametric discriminant analysis, manifold learning,
Full Text: PDF(367.8KB)>>
Summary:
We extend the Nonparametric Discriminant Analysis (NDA) algorithm to a semi-supervised dimensionality reduction technique, called Semi-supervised Nonparametric Discriminant Analysis (SNDA). SNDA preserves the inherent advantages of NDA, that is, relaxing the Gaussian assumption required for the traditional LDA-based methods. SNDA takes advantage of both the discriminating power provided by the NDA method and the locality-preserving power provided by the manifold learning. Specifically, the labeled data points are used to maximize the separability between different classes and both the labeled and unlabeled data points are used to build a graph incorporating neighborhood information of the data set. Experiments on synthetic as well as real datasets demonstrate the effectiveness of the proposed approach.
|
|