|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Extended CRC: Face Recognition with a Single Training Image per Person via Intraclass Variant Dictionary
Guojun LIN Mei XIE Ling MAO
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E96-D
No.10
pp.2290-2293 Publication Date: 2013/10/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E96.D.2290 Print ISSN: 0916-8532 Type of Manuscript: LETTER Category: Image Recognition, Computer Vision Keyword: face recognition, sparse representation, collaborative representation, single training image,
Full Text: PDF(583KB)>>
Summary:
For face recognition with a single training image per person, Collaborative Representation based Classification (CRC) has significantly less complexity than Extended Sparse Representation based Classification (ESRC). However, CRC gets lower recognition rates than ESRC. In order to combine the advantages of CRC and ESRC, we propose Extended Collaborative Representation based Classification (ECRC) for face recognition with a single training image per person. ECRC constructs an auxiliary intraclass variant dictionary to represent the possible variation between the testing and training images. Experimental results show that ECRC outperforms the compared methods in terms of both high recognition rates and low computation complexity.
|
|