Modeling of NBTI Stress Induced Hole-Trapping and Interface-State-Generation Mechanisms under a Wide Range of Bias Conditions

Chenyue MA
Hans Jürgen MATTAUSCH
Masataka MIYAKE
Takahiro IIZUKA
Kazuya MATSUZAWA
Seiichiro YAMAGUCHI
Teruhiko HOSHIDA
Akinori KINOSHITA
Takahiko ARAKAWA
Jin HE
Mitiko MIURA-MATTAUSCH

Publication
IEICE TRANSACTIONS on Electronics   Vol.E96-C    No.10    pp.1339-1347
Publication Date: 2013/10/01
Online ISSN: 1745-1353
DOI: 10.1587/transele.E96.C.1339
Print ISSN: 0916-8516
Type of Manuscript: PAPER
Category: Electronic Components
Keyword: 
NBTI effect,  interface-state,  hole-trapping,  modeling,  

Full Text: PDF>>
Buy this Article



Summary: 
A predictive compact model of p-MOSFET negative bias temperature instability (NBTI) degradation for circuit simulation is reported with unified description of the interface-state-generation and hole-trapping mechanisms. It is found that the hole-trapping is responsible for the initial stage of the stress degradation, and the interface-state generation dominates the degradation afterwards, especially under high stress conditions. The predictive compact model with 8 parameters enables to reproduce the measurement results of the NBTI degradation under a wide range of stress bias conditions. Finally, the developed NBTI model is implemented into the compact MOSFET model HiSIM for circuit degradation simiulation.