|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Sparsity Preserving Embedding with Manifold Learning and Discriminant Analysis
Qian LIU Chao LAN Xiao Yuan JING Shi Qiang GAO David ZHANG Jing Yu YANG
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E95-D
No.1
pp.271-274 Publication Date: 2012/01/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E95.D.271 Print ISSN: 0916-8532 Type of Manuscript: LETTER Category: Pattern Recognition Keyword: sparsity preserving embedding, manifold learning, discriminant analysis, feature extraction,
Full Text: PDF(239.6KB)>>
Summary:
In the past few years, discriminant analysis and manifold learning have been widely used in feature extraction. Recently, the sparse representation technique has advanced the development of pattern recognition. In this paper, we combine both discriminant analysis and manifold learning with sparse representation technique and propose a novel feature extraction approach named sparsity preserving embedding with manifold learning and discriminant analysis. It seeks an embedded space, where not only the sparse reconstructive relations among original samples are preserved, but also the manifold and discriminant information of both original sample set and the corresponding reconstructed sample set is maintained. Experimental results on the public AR and FERET face databases show that our approach outperforms relevant methods in recognition performance.
|
|