Waveform Optimization for MIMO Radar Based on Cramer-Rao Bound in the Presence of Clutter

Hongyan WANG  Guisheng LIAO  Jun LI  Liangbing HU  Wangmei GUO  

IEICE TRANSACTIONS on Communications   Vol.E95-B   No.6   pp.2087-2094
Publication Date: 2012/06/01
Online ISSN: 1745-1345
DOI: 10.1587/transcom.E95.B.2087
Print ISSN: 0916-8516
Type of Manuscript: PAPER
Category: Sensing
multi-input multi-output (MIMO) radar,  waveform optimization,  clutter,  Cramer-Rao bound (CRB),  semidefinite programming (SDP),  

Full Text: PDF(946.8KB)>>
Buy this Article

In this paper, we consider the problem of waveform optimization for multi-input multi-output (MIMO) radar in the presence of signal-dependent noise. A novel diagonal loading (DL) based method is proposed to optimize the waveform covariance matrix (WCM) for minimizing the Cramer-Rao bound (CRB) which improves the performance of parameter estimation. The resulting nonlinear optimization problem is solved by resorting to a convex relaxation that belongs to the semidefinite programming (SDP) class. An optimal solution to the initial problem is then constructed through a suitable approximation to an optimal solution of the relaxed one (in a least squares (LS) sense). Numerical results show that the performance of parameter estimation can be improved considerably by the proposed method compared to uncorrelated waveforms.