|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Some Properties of Binary Matrices and Quasi-Orthogonal Signals Based on Hadamard Equivalence
Ki-Hyeon PARK Hong-Yeop SONG
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E95-A
No.11
pp.1862-1872 Publication Date: 2012/11/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E95.A.1862 Print ISSN: 0916-8508 Type of Manuscript: Special Section PAPER (Special Section on Signal Design and Its Applications in Communications) Category: Sequences Keyword: Hadamard equivalence, orthogonality, Quasi-orthogonal signal, Quasi-Hadamard matrix,
Full Text: PDF>>
Summary:
We apply the Hadamard equivalence to all the binary matrices of the size m n and study various properties of this equivalence relation and its classes. We propose to use HR-minimal as a representative of each equivalence class, and count and/or estimate the number of HR-minimals of size m n. Some properties and constructions of HR-minimals are investigated. Especially, we figure that the weight on an HR-minimal's second row plays an important role, and introduce the concept of Quasi-Hadamard matrices (QH matrices). We show that the row vectors of m n QH matrices form a set of m binary vectors of length n whose maximum pairwise absolute correlation is minimized over all such sets. Some properties, existence, and constructions of Quasi-orthogonal sequences are also discussed. We also give a relation of these with cyclic difference sets. We report lots of exhaustive search results and open problems, one of which is equivalent to the Hadamard conjecture.
|
|