|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Implementation of Scale and Rotation Invariant On-Line Object Tracking Based on CUDA
Quan MIAO Guijin WANG Xinggang LIN
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E94-D
No.12
pp.2549-2552 Publication Date: 2011/12/01 Online ISSN: 1745-1361
DOI: 10.1587/transinf.E94.D.2549 Print ISSN: 0916-8532 Type of Manuscript: LETTER Category: Image Recognition, Computer Vision Keyword: object tracking, classifier updating, GPGPU, CUDA,
Full Text: PDF>>
Summary:
Object tracking is a major technique in image processing and computer vision. Tracking speed will directly determine the quality of applications. This paper presents a parallel implementation for a recently proposed scale- and rotation-invariant on-line object tracking system. The algorithm is based on NVIDIA's Graphics Processing Units (GPU) using Compute Unified Device Architecture (CUDA), following the model of single instruction multiple threads. Specifically, we analyze the original algorithm and propose the GPU-based parallel design. Emphasis is placed on exploiting the data parallelism and memory usage. In addition, we apply optimization technique to maximize the utilization of NVIDIA's GPU and reduce the data transfer time. Experimental results show that our GPGPU-based method running on a GTX480 graphics card could achieve up to 12X speed-up compared with the efficiency equivalence on an Intel E8400 3.0 GHz CPU, including I/O time.
|
|