
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Error Probability Bounds Analysis of JMLSE Based Interference Cancellation Algorithms for MQAMOFDM Systems
Zhenyu ZHOU Takuro SATO
Publication
IEICE TRANSACTIONS on Communications
Vol.E94B
No.7
pp.20322042 Publication Date: 2011/07/01
Online ISSN: 17451345
DOI: 10.1587/transcom.E94.B.2032
Print ISSN: 09168516 Type of Manuscript: PAPER Category: Wireless Communication Technologies Keyword: error probability bound, JMLSE, MQAMOFDM, genieaided receiver, receiver diversity, cochannel interference,
Full Text: PDF>>
Summary:
Due to the reuse factor reduction, the same frequencies are reused in adjacent neighboring cells, which causes an attendant increase in cochannel interference (CCI). CCI has already become the limiting factor in the performance of orthogonal frequency division multiplexing (OFDM) based cellular systems. Joint maximum likelihood sequence estimation (JMLSE) based interference cancellation algorithms have been under intense research. However, despite the fact that the error probability of JMLSE is critical for analyzing the performance, to the best of our knowledge, the mathematical expression has not been derived for MQAMOFDM yet. Direct computation of the error probability involves integrating a multidimensional Gaussian distribution that has no closedform solution. Therefore, an alternative way is to upper and lower bound the error probability with computable quantities. In this paper, firstly, both the upper and the conventional lower error probability bounds of JMLSE are derived for MQAMOFDM systems based on a genieaided receiver. Secondly, in order to reduce the gap between the conventional lower bound and the simulation results, a tighter lower bound is derived by replacing the genie with a less generous one. Thirdly, those derived error probability bounds are generalized to the receiver diversity scheme. These error probability bounds are important new analytical results that can be used to provide rapid and accurate estimation of the BER performance over any MQAM scheme and an arbitrary number of interferers and receive antennas.

