|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Noise Robust Gradient Descent Learning for Complex-Valued Associative Memory
Masaki KOBAYASHI Hirofumi YAMADA Michimasa KITAHARA
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E94-A
No.8
pp.1756-1759 Publication Date: 2011/08/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E94.A.1756 Print ISSN: 0916-8508 Type of Manuscript: LETTER Category: Nonlinear Problems Keyword: complex-valued neural networks, associative memory, gradient descent learning, noise robustness,
Full Text: PDF(286.3KB)>>
Summary:
Complex-valued Associative Memory (CAM) is an advanced model of Hopfield Associative Memory. The CAM is based on multi-state neurons and has the high ability of representation. Lee proposed gradient descent learning for the CAM to improve the storage capacity. It is based on only the phases of input signals. In this paper, we propose another type of gradient descent learning based on both the phases and the amplitude. The proposed learning method improves the noise robustness and accelerates the learning speed.
|
|
|