|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
A Generalized Construction of Zero-Correlation Zone Sequence Set with Sequence Subsets
Takafumi HAYASHI Takao MAEDA Satoshi OKAWA
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E94-A
No.7
pp.1597-1602 Publication Date: 2011/07/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E94.A.1597 Print ISSN: 0916-8508 Type of Manuscript: LETTER Category: Spread Spectrum Technologies and Applications Keyword: finite-length sequence, sequence subsets, inter-subset zero-correlation, zero-correlation zone, aperiodic correlation function, periodic correlation function,
Full Text: PDF>>
Summary:
The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone for both periodic and aperiodic correlation functions. The proposed sequences can be constructed from a pair of Hadamard matrices of orders n0 and n1. The constructed sequence set consists of n0 n1 ternary sequences, each of length n0(m+2)(n1+Δ), for a non-negative integer m and Δ ≥ 2. The zero-correlation zone of the proposed sequences is |τ| ≤ n0m+1-1, where τ is the phase shift. The proposed sequence set consists of n0 subsets, each with a member size n1. The correlation function of the sequences of a pair of different subsets, referred to as the inter-subset correlation function, has a zero-correlation zone with a width that is approximately Δ times that of the correlation function of sequences of the same subset (intra-subset correlation function). The inter-subset zero-correlation zone of the proposed sequences is |τ| ≤ Δn0m+1, where τ is the phase shift. The wide inter-subset zero-correlation enables performance improvement during application of the proposed sequence set.
|
|