Adaptive Circuits for the 0.5-V Nanoscale CMOS Era

Kiyoo ITOH
Takashi OSHIMA

IEICE TRANSACTIONS on Electronics   Vol.E93-C    No.3    pp.216-233
Publication Date: 2010/03/01
Online ISSN: 1745-1353
DOI: 10.1587/transele.E93.C.216
Print ISSN: 0916-8516
Type of Manuscript: Special Section INVITED PAPER (Special Section on Circuits and Design Techniques for Advanced Large Scale Integration)
minimum operating voltage,  SRAM,  DRAM,  FD-SOI,  FinFET,  

Full Text: FreePDF

The minimum operating voltage, Vmin, of nanoscale CMOS LSIs is investigated to breach the 1-V wall that we are facing in the 65-nm device generation, and open the door to the below 0.5-V era. A new method using speed variation is proposed to evaluate Vmin. It shows that Vmin is very sensitive to the lowest necessary threshold voltage, Vt0, of MOSFETs and to threshold-voltage variations, Δ Vt, which become more significant with device scaling. There is thus a need for low-Vt0 circuits and ΔVt-immune MOSFETs to reduce Vmin. For memory-rich LSIs, the SRAM block is particularly problematic because it has the highest Vmin. Various techniques are thus proposed to reduce the Vmin: using RAM repair, shortening the data line, up-sizing, and using more relaxed MOSFET scaling. To effectively reduce Vmin of other circuit blocks, dual-Vt0 and dual-VDD circuits using gate-source reverse biasing, temporary activation, and series connection of another small low-Vt0 MOSFET are proposed. They are dynamic logic circuits enabling the power-delay product of the conventional static CMOS inverter to be reduced to 0.09 at a 0.2-V supply, and a DRAM dynamic sense amplifier and power switches operable at below 0.5 V. In addition, a fully-depleted structure (FD-SOI) and fin-type structure (FinFET) for ΔVt-immune MOSFETs are discussed in terms of their low-voltage potential and challenges. As a result, the height up-scalable FinFETs turns out to be quite effective to reduce Vmin to less than 0.5 V, if combined with the low-Vt0 circuits. For mixed-signal LSIs, investigation of low-voltage potential of analog circuits, especially for comparators and operational amplifiers, reveals that simple inverter op-amps, in which the low gain and nonlinearity are compensated for by digitally assisted analog designs, are crucial to 0.5-V operations. Finally, it is emphasized that the development of relevant devices and fabrication processes is the key to the achievement of 0.5-V nanoscale LSIs.