
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Stochastic SparseGrid Collocation Algorithm for SteadyState Analysis of Nonlinear System with Process Variations
Jun TAO Xuan ZENG Wei CAI Yangfeng SU Dian ZHOU
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E93A
No.6
pp.12041214 Publication Date: 2010/06/01 Online ISSN: 17451337
DOI: 10.1587/transfun.E93.A.1204 Print ISSN: 09168508 Type of Manuscript: PAPER Category: VLSI Design Technology and CAD Keyword: stochastic collocation algorithm, sparse grid, steadystate analysis, process variations,
Full Text: PDF(929.8KB)>>
Summary:
In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steadystate analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the momentmatching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steadystate behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steadystate analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.

