Stochastic Sparse-Grid Collocation Algorithm for Steady-State Analysis of Nonlinear System with Process Variations

Jun TAO  Xuan ZENG  Wei CAI  Yangfeng SU  Dian ZHOU  

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E93-A   No.6   pp.1204-1214
Publication Date: 2010/06/01
Online ISSN: 1745-1337
DOI: 10.1587/transfun.E93.A.1204
Print ISSN: 0916-8508
Type of Manuscript: PAPER
Category: VLSI Design Technology and CAD
stochastic collocation algorithm,  sparse grid,  steady-state analysis,  process variations,  

Full Text: PDF(929.8KB)>>
Buy this Article

In this paper, a Stochastic Collocation Algorithm combined with Sparse Grid technique (SSCA) is proposed to deal with the periodic steady-state analysis for nonlinear systems with process variations. Compared to the existing approaches, SSCA has several considerable merits. Firstly, compared with the moment-matching parameterized model order reduction (PMOR) which equally treats the circuit response on process variables and frequency parameter by Taylor approximation, SSCA employs Homogeneous Chaos to capture the impact of process variations with exponential convergence rate and adopts Fourier series or Wavelet Bases to model the steady-state behavior in time domain. Secondly, contrary to Stochastic Galerkin Algorithm (SGA), which is efficient for stochastic linear system analysis, the complexity of SSCA is much smaller than that of SGA for nonlinear case. Thirdly, different from Efficient Collocation Method, the heuristic approach which may result in "Rank deficient problem" and "Runge phenomenon," Sparse Grid technique is developed to select the collocation points needed in SSCA in order to reduce the complexity while guaranteing the approximation accuracy. Furthermore, though SSCA is proposed for the stochastic nonlinear steady-state analysis, it can be applied to any other kind of nonlinear system simulation with process variations, such as transient analysis, etc.