A Design Methodology for a DPA-Resistant Circuit with RSL Techniques

Daisuke SUZUKI  Minoru SAEKI  Koichi SHIMIZU  Akashi SATOH  Tsutomu MATSUMOTO  

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E93-A   No.12   pp.2497-2508
Publication Date: 2010/12/01
Online ISSN: 1745-1337
DOI: 10.1587/transfun.E93.A.2497
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on VLSI Design and CAD Algorithms)
Category: Logic Synthesis, Test and Verification
side-channel attacks,  differential power analysis,  hardware countermeasure,  random switching logic,  CMOS logic circuit,  

Full Text: PDF>>
Buy this Article

A design methodology of Random Switching Logic (RSL) using CMOS standard cell libraries is proposed to counter power analysis attacks against cryptographic hardware modules. The original RSL proposed in 2004 requires a unique RSL-gate for random data masking and glitch suppression to prevent secret information leakage through power traces. In contrast, our new methodology enables to use general logic gates supported by standard cell libraries. In order to evaluate its practical performance in hardware size and speed as well as resistance against power analysis attacks, an AES circuit with the RSL technique was implemented as a cryptographic LSI using 130-nm and 90-nm CMOS standard cell library. From the results of attack experiments that used a million traces, we confirmed that the RSL-AES circuit has very high DPA and CPA resistance thanks to the contributions of both the masking function and the glitch suppressing function.