Reducing Payload Inspection Cost Using Rule Classification for Fast Attack Signature Matching

Sunghyun KIM  Heejo LEE  

Publication
IEICE TRANSACTIONS on Information and Systems   Vol.E92-D   No.10   pp.1971-1978
Publication Date: 2009/10/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.E92.D.1971
Print ISSN: 0916-8532
Type of Manuscript: Special Section PAPER (Special Section on New Technologies and their Applications of the Internet)
Category: DRM and Security
Keyword: 
intrusion detection system,  signature matching,  rule classification,  pattern matching,  

Full Text: PDF(363.1KB)>>
Buy this Article




Summary: 
Network intrusion detection systems rely on a signature-based detection engine. When under attack or during heavy traffic, the detection engines need to make a fast decision whether a packet or a sequence of packets is normal or malicious. However, if packets have a heavy payload or the system has a great deal of attack patterns, the high cost of payload inspection severely diminishes detection performance. Therefore, it would be better to avoid unnecessary payload scans by checking the protocol fields in the packet header, before executing their heavy operations of payload inspection. When payload inspection is necessary, it is better to compare a minimum number of attack patterns. In this paper, we propose new methods to classify attack signatures and make pre-computed multi-pattern groups. Based on IDS rule analysis, we grouped the signatures of attack rules by a multi-dimensional classification method adapted to a simplified address flow. The proposed methods reduce unnecessary payload scans and make light pattern groups to be checked. While performance improvements are dependent on a given networking environment, the experimental results with the DARPA data set and university traffic show that the proposed methods outperform the most recent Snort by up to 33%.