Noise Robust Voice Activity Detection Based on Switching Kalman Filter

Masakiyo FUJIMOTO  Kentaro ISHIZUKA  

IEICE TRANSACTIONS on Information and Systems   Vol.E91-D   No.3   pp.467-477
Publication Date: 2008/03/01
Online ISSN: 1745-1361
DOI: 10.1093/ietisy/e91-d.3.467
Print ISSN: 0916-8532
Type of Manuscript: Special Section PAPER (Special Section on Robust Speech Processing in Realistic Environments)
Category: Voice Activity Detection
voice activity detection,  statistical model,  switching Kalman filter,  noisy environment,  CENSREC-1-C,  

Full Text: PDF(1.1MB)>>
Buy this Article

This paper addresses the problem of voice activity detection (VAD) in noisy environments. The VAD method proposed in this paper is based on a statistical model approach, and estimates statistical models sequentially without a priori knowledge of noise. Namely, the proposed method constructs a clean speech / silence state transition model beforehand, and sequentially adapts the model to the noisy environment by using a switching Kalman filter when a signal is observed. In this paper, we carried out two evaluations. In the first, we observed that the proposed method significantly outperforms conventional methods as regards voice activity detection accuracy in simulated noise environments. Second, we evaluated the proposed method on a VAD evaluation framework, CENSREC-1-C. The evaluation results revealed that the proposed method significantly outperforms the baseline results of CENSREC-1-C as regards VAD accuracy in real environments. In addition, we confirmed that the proposed method helps to improve the accuracy of concatenated speech recognition in real environments.