
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Optimization for Optical Network Designs Based on Existing Power Grids
Areeyata SRIPETCH Poompat SAENGUDOMLERT
Publication
IEICE TRANSACTIONS on Communications
Vol.E91B
No.3
pp.689699 Publication Date: 2008/03/01 Online ISSN: 17451345
DOI: 10.1093/ietcom/e91b.3.689 Print ISSN: 09168516 Type of Manuscript: PAPER Category: Optical Fiber for Communications Keyword: physical topology design, routing and wavelength assignment, optical amplifier placement, integer linear programming, simulated annealing,
Full Text: PDF(1.3MB)>>
Summary:
In a power grid used to distribute electricity, optical fibers can be inserted inside overhead ground wires to form an optical network infrastructure for data communications. Dense wavelength division multiplexing (DWDM)based optical networks present a promising approach to achieve a scalable backbone network for power grids. This paper proposes a complete optimization procedure for optical network designs based on an existing power grid. We design a network as a subgraph of the power grid and divide the network topology into two layers: backbone and access networks. The design procedure includes physical topology design, routing and wavelength assignment (RWA) and optical amplifier placement. We formulate the problem of topology design into two steps: selecting the concentrator nodes and their node members, and finding the connections among concentrators subject to the twoconnectivity constraint on the backbone topology. Selection and connection of concentrators are done using integer linear programming (ILP). For RWA and optical amplifier placement problem, we solve these two problems together since they are closely related. Since the ILP for solving these two problems becomes intractable with increasing network size, we propose a simulated annealing approach. We choose a neighborhood structure based on pathswitching operations using k shortest paths for each source and destination pair. The optimal number of optical amplifiers is solved based on local search among these neighbors. We solve and present some numerical results for several randomly generated power grid topologies.

