Realization of Low Power High-Speed Channel Filters with Stringent Adjacent Channel Attenuation Specifications for Wireless Communication Receivers

Jimson MATHEW  R. MAHESH  A.P. VINOD  Edmund M-K. LAI  

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E91-A   No.9   pp.2564-2570
Publication Date: 2008/09/01
Online ISSN: 1745-1337
DOI: 10.1093/ietfec/e91-a.9.2564
Print ISSN: 0916-8508
Type of Manuscript: PAPER
Category: Digital Signal Processing
Keyword: 
wireless communication receiver,  channelizer,  FIR filter,  binary subexpression elimination,  low power,  

Full Text: PDF>>
Buy this Article




Summary: 
Finite impulse response (FIR) filtering is the most computationally intensive operation in the channelizer of a wireless communication receiver. Higher order FIR channel filters are needed in the channelizer to meet the stringent adjacent channel attenuation specifications of wireless communications standards. The computational cost of FIR filters is dominated by the complexity of the coefficient multipliers. Even though many methods for reducing the complexity of filter multipliers have been proposed in literature, these works focused on lower order filters. This paper presents a coefficient-partitioning-based binary subexpression elimination method for realizing low power FIR filters. We show that the FIR filters implemented using proposed method consume less power and achieve speed improvement compared to existing filter implementations. Design examples of the channel filters employed in the Digital Advanced Mobile Phone System (D-AMPS) and Personal Digital Cellular (PDC) receivers show that the proposed method achieved 23% average reductions of full adder and power consumption and 23.3% reduction of delay over the best existing method. Synthesis results show that the proposed method offers average area reduction of 8% and power reduction of 22% over the best known method in literature.