Design of a Fuzzy Based Outer Loop Controller for Improving the Training Performance of LMS Algorithm

Ali OZEN  Ismail KAYA  Birol SOYSAL  

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E91-A   No.12   pp.3738-3744
Publication Date: 2008/12/01
Online ISSN: 1745-1337
DOI: 10.1093/ietfec/e91-a.12.3738
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Signal Design and its Applications in Communications)
Category: Channel Equalization
Keyword: 
channel equalization,  tracking,  fuzzy logic controller,  computational complexity,  convergence of training,  

Full Text: PDF>>
Buy this Article




Summary: 
Because of the fact that mobile communication channel changes by time, it is necessary to employ adaptive channel equalizers in order to combat the distorting effects of the channel. Least Mean Squares (LMS) algorithm is one of the most popular channel equalization algorithms and is preferred over other algorithms such as the Recursive Least Squares (RLS) and Maximum Likelihood Sequence Estimation (MLSE) when simplicity is the dominant decision factor. However, LMS algorithm suffers from poor performance and convergence speed within the training period specified by most of the standards. The aim of this study is to improve the convergence speed and performance of the LMS algorithm by adjusting the step size using fuzzy logic. The proposed method is compared with the Channel Matched Filter-Decision Feedback Equalizer (CMF-DFE) [1] which provides multi path propagation diversity by collecting the energy in the channel, Minimum Mean Square Error-Decision Feedback Equalizer (MMSE-DFE) [2] which is one of the most successful equalizers for the data packet transmission, normalized LMS-DFE (N-LMS-DFE) [3] , variable step size (VSS) LMS-DFE [4] , fuzzy LMS-DFE [5],[6] and RLS-DFE [7] . The obtained simulation results using HIPERLAN/1 standards have demonstrated that the proposed LMS-DFE algorithm based on fuzzy logic has considerably better performance than others.