|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Two-Dimensional Simulation of Electric Field and Carrier Concentration of Low-Temperature N-Channel Poly-Si LDD TFTs
Yukisato NOGAMI Toshifumi SATOH Hiroyuki TANGO
Publication
IEICE TRANSACTIONS on Electronics
Vol.E90-C
No.5
pp.983-987 Publication Date: 2007/05/01 Online ISSN: 1745-1353
DOI: 10.1093/ietele/e90-c.5.983 Print ISSN: 0916-8516 Type of Manuscript: Special Section PAPER (Special Section on Fundamentals and Applications of Advanced Semiconductor Devices) Category: Junction Formation and TFT Reliability Keyword: n-channel poly-Si LDD TFT, device simulation, electric field distribution, carrier concentration distribution, hot-carrier degradation,
Full Text: PDF>>
Summary:
A two-dimensional (2-D) physical model of n-channel poly-Si LDD TFTs in comparison with that of SD TFTs is presented to analyze hot-carrier degradation. The model is based on 2-D device simulator's Gaussian doping profiles for the source and drain junctions fitted to the lateral and vertical impurity profiles in poly-Si obtained from a 2-D process simulator. We have shown that, in the current saturation bias (Vg<Vd) in LDD TFT, the maximum 2-D lateral electric field is in the deep region under the gate edge, and the current flows in the deep channel region near the drain junction. These results suggest that the drain avalanche hot-carrier (DAHC) degradation first occurs at both the gate oxide/poly-Si and poly-Si/substrate interfaces and grain boundaries in deep LDD region under the gate edge due to the state generation. In the weak current saturation bias (Vg=Vd), weak channel pinch-off occurs near the channel/LDD junction and degradation due to hot-electron injection into the gate oxide under the gate will occur in the LDD region.
|
|
|