
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

A New Adaptive Filter Algorithm for System Identification Using Independent Component Analysis
JunMei YANG Hideaki SAKAI
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E90A
No.8
pp.15491554 Publication Date: 2007/08/01
Online ISSN: 17451337
DOI: 10.1093/ietfec/e90a.8.1549
Print ISSN: 09168508 Type of Manuscript: Special Section PAPER (Special Section on Papers Selected from the 21st Symposium on Signal Processing) Category: Keyword: adaptive filter, system identification, independent component analysis, stochastic information gradient,
Full Text: PDF>>
Summary:
This paper proposes a new adaptive filter algorithm for system identification by using an independent component analysis (ICA) technique, which separates the signal from noisy observation under the assumption that the signal and noise are independent. We first introduce an augmented statespace expression of the observed signal, representing the problem in terms of ICA. By using a nonparametric Parzen window density estimator and the stochastic information gradient, we derive an adaptive algorithm to separate the noise from the signal. The proposed ICAbased algorithm does not suppress the noise in the least mean square sense but to maximize the independence between the signal part and the noise. The computational complexity of the proposed algorithm is compared with that of the standard NLMS algorithm. The stationary point of the proposed algorithm is analyzed by using an averaging method. We can directly use the new ICAbased algorithm in an acoustic echo canceller without doubletalk detector. Some simulation results are carried out to show the superiority of our ICA method to the conventional NLMS algorithm.

