|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Generalization Error Estimation for Non-linear Learning Methods
Masashi SUGIYAMA
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E90-A
No.7
pp.1496-1499 Publication Date: 2007/07/01 Online ISSN: 1745-1337
DOI: 10.1093/ietfec/e90-a.7.1496 Print ISSN: 0916-8508 Type of Manuscript: LETTER Category: Neural Networks and Bioengineering Keyword: supervised learning, generalization capability, model selection, subspace information criterion, non-linear learning,
Full Text: PDF>>
Summary:
Estimating the generalization error is one of the key ingredients of supervised learning since a good generalization error estimator can be used for model selection. An unbiased generalization error estimator called the subspace information criterion (SIC) is shown to be useful for model selection, but its range of application is limited to linear learning methods. In this paper, we extend SIC to be applicable to non-linear learning.
|
|