A VLSI Spiking Feedback Neural Network with Negative Thresholding and Its Application to Associative Memory

Kan'ya SASAKI  Takashi MORIE  Atsushi IWATA  

Publication
IEICE TRANSACTIONS on Electronics   Vol.E89-C   No.11   pp.1637-1644
Publication Date: 2006/11/01
Online ISSN: 1745-1353
DOI: 10.1093/ietele/e89-c.11.1637
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Section on Novel Device Architectures and System Integration Technologies)
Category: 
Keyword: 
spiking neuron model,  feedback network,  global excitatory unit,  negative thresholding,  associative memory,  

Full Text: PDF>>
Buy this Article




Summary: 
An integrate-and-fire-type spiking feedback network is discussed in this paper. In our spiking neuron model, analog information expressing processing results is given by the relative relation of spike firing. Therefore, for spiking feedback networks, all neurons should fire (pseudo-)periodically. However, an integrate-and-fire-type neuron generates no spike unless its internal potential exceeds the threshold. To solve this problem, we propose negative thresholding operation. In this paper, this operation is achieved by a global excitatory unit. This unit operates immediately after receiving the first spike input. We have designed a CMOS spiking feedback network VLSI circuit with the global excitatory unit for Hopfield-type associative memory. The circuit simulation results show that the network achieves correct association operation.