Network Traffic Prediction Using Least Mean Kurtosis

Hong ZHAO  Nirwan ANSARI  Yun Q. SHI  

IEICE TRANSACTIONS on Communications   Vol.E89-B   No.5   pp.1672-1674
Publication Date: 2006/05/01
Online ISSN: 1745-1345
DOI: 10.1093/ietcom/e89-b.5.1672
Print ISSN: 0916-8516
Type of Manuscript: LETTER
Category: Fundamental Theories for Communications
traffic prediction,  LMK,  self-similar,  FARIMA,  Internet traffic,  

Full Text: PDF>>
Buy this Article

Recent studies of high quality, high resolution traffic measurements have revealed that network traffic appears to be statistically self similar. Contrary to the common belief, aggregating self-similar traffic streams can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. In this paper, Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly over the Least Mean Square (LMS) algorithm.