|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Fuzzy Cellular Automata for Modeling Pattern Classifier
Pradipta MAJI P. Pal CHAUDHURI
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E88-D
No.4
pp.691-702 Publication Date: 2005/04/01 Online ISSN:
DOI: 10.1093/ietisy/e88-d.4.691 Print ISSN: 0916-8532 Type of Manuscript: PAPER Category: Automata and Formal Language Theory Keyword: cellular automata (CA), fuzzy cellular automata (FCA), classifier, genetic algorithm (GA), decision tree,
Full Text: PDF(1.4MB)>>
Summary:
This paper investigates the application of the computational model of Cellular Automata (CA) for pattern classification of real valued data. A special class of CA referred to as Fuzzy CA (FCA) is employed to design the pattern classifier. It is a natural extension of conventional CA, which operates on binary string employing boolean logic as next state function of a cell. By contrast, FCA employs fuzzy logic suitable for modeling real valued functions. A matrix algebraic formulation has been proposed for analysis and synthesis of FCA. An efficient formulation of Genetic Algorithm (GA) is reported for evolution of desired FCA to be employed as a classifier of datasets having attributes expressed as real numbers. Extensive experimental results confirm the scalability of the proposed FCA based classifier to handle large volume of datasets irrespective of the number of classes, tuples, and attributes. Excellent classification accuracy has established the FCA based pattern classifier as an efficient and cost-effective solutions for the classification problem.
|
|