
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

New Binary Constant Weight Codes Based on Cayley Graphs of Groups and Their Decoding Methods
Jun IMAI Yoshinao SHIRAKI
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E88A
No.10
pp.27342744 Publication Date: 2005/10/01 Online ISSN:
DOI: 10.1093/ietfec/e88a.10.2734 Print ISSN: 09168508 Type of Manuscript: Special Section PAPER (Special Section on Information Theory and Its Applications) Category: Coding Theory Keyword: Cayley graphs, permutation representations, nonlinear binary codes of constant weights, Buckminster Fullerene,
Full Text: PDF>>
Summary:
We propose a new class of binary nonlinear codes of constant weights derived from a permutation representation of a group that is given by a combinatorial definition such as Cayley graphs of a group. These codes are constructed by the following direct interpretation method from a group: (1) take one discrete group whose elements are defined by generators and their relations, such as those in the form of Cayley graphs; and (2) embedding the group into a binary space using some of their permutation representations by providing the generators with realization of permutations of some terms. The proposed codes are endowed with some good characteristics as follows: (a) we can easily learn information about the distances of the obtained codes, and moreover, (b) we can establish a decoding method for them that can correct random errors whose distances from code words are less than half of the minimum distances achieved using only parity checking procedures.

