Multipath Interference Canceller Employing Multipath Interference Replica Generation with Previously Transmitted Packet Combining for Incremental Redundancy in HSDPA

Nobuhiko MIKI
Sadayuki ABETA

IEICE TRANSACTIONS on Communications   Vol.E86-B    No.1    pp.142-153
Publication Date: 2003/01/01
Online ISSN: 
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Issue on Multiple Access and Signal Transmission Techniques for Future Mobile Communications)
multipath interference canceller,  hybrid ARQ,  soft-decision,  high-speed downlink packet access,  

Full Text: PDF(2.2MB)>>
Buy this Article

This paper proposes a multipath interference canceller (MPIC) employing multipath interference (MPI) replica generation (MIG) utilizing previously transmitted packet combining (PTPC), which is well-suited to incremental redundancy, in order to achieve a peak throughput of nearly 8 Mbps in a multipath fading environment in high-speed downlink packet access (HSDPA). In our scheme, more accurate MPI replica generation is possible by generating MPI replicas utilizing the soft-decision symbol sequence of the previously transmitted packets in addition to that of the latest transmitted packet. Computer simulation results elucidate that the achievable throughput of the MPIC employing MIG-PTPC is increased by approximately 100 kbps and 200 kbps and the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) per antenna at the throughput of 0.8 normalized by the maximum throughput is improved by about 0.3 and 0.7 dB compared to that of the MPIC using the soft-decision symbol sequence after Rake combining of the last transmitted packet both in 2- and 3-path Rayleigh fading channels for QPSK and 16QAM data modulations, respectively. Furthermore, we clarify that the maximum peak throughput using the proposed MPIC with MIG-PTPC coupled with incremental redundancy achieves approximately 7 Mbps and 8 Mbps with 16QAM and 64QAM data modulations in a 2-path Rayleigh fading channel, respectively, within a 5-MHz bandwidth.