Experimental Evaluations on Throughput Performance of Adaptive Modulation and Channel Coding and Hybrid ARQ in HSDPA

Takahiro ASAI

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E86-A    No.7    pp.1656-1668
Publication Date: 2003/07/01
Online ISSN: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Multi-dimensional Mobile Information Networks)
high speed downlink packet access,  adaptive modulation and channel coding,  hybrid ARQ,  

Full Text: PDF>>
Buy this Article

This paper presents laboratory experimental results on the throughput performance when key techniques such as adaptive modulation and channel coding (AMC) and hybrid automatic repeat request (ARQ) with packet combining are employed by an implemented transceiver based on the High-Speed Downlink Packet Access (HSDPA) air interface in a multipath fading channel. In AMC operation, we applied four modulation and coding schemes (MCSs): MCS1 (QPSK data modulation with the channel coding rate of R = 1/2, hereafter simply referred to as QPSK with R = 1/2), MCS2 (QPSK with R = 3/4), MCS3 (16 QAM with R = 1/2), and MCS4 (16 QAM with R = 3/4). The results elucidate that a peak average throughput above 5.0 Mbps is achieved at the average received signal energy per chip-to-background noise power spectrum density ratio (Ec/N0) of more than approximately 20 dB in a one-path fading channel; nevertheless, the achievable peak throughput becomes approximately 2.9 (2.6) Mbps due to severe multipath interference (MPI) in a two-path fading channel where the average signal power of the second path is 6 (3) dB lower than that of the first path, assuming nine-code-channel multiplexing with the fading maximum Doppler frequency of fD = 5 Hz. Furthermore, we clarify that although the throughput performance employing Type-II hybrid ARQ (i.e., Incremental redundancy) is almost the same as that employing Type-I hybrid ARQ with packet combining (i.e., Chase combining) in a two-path fading channel, Incremental redundancy exhibits superiority over Chase combing in a one-path fading channel for a high Doppler frequency channel such as fD = 80 Hz.