Recognition of Shape-Changing Hand Gestures

Mun-Ho JEONG  Yoshinori KUNO  Nobutaka SHIMADA  Yoshiaki SHIRAI  

IEICE TRANSACTIONS on Information and Systems   Vol.E85-D   No.10   pp.1678-1687
Publication Date: 2002/10/01
Online ISSN: 
Print ISSN: 0916-8532
Type of Manuscript: PAPER
Category: Multimedia Pattern Processing
gesture recognition,  active contour,  switching linear model,  

Full Text: PDF>>
Buy this Article

We present a method to track and recognize shape-changing hand gestures simultaneously. The switching linear model using active contour model well corresponds to temporal shapes and motions of hands. However, inference in the switching linear model is computationally intractable, and therefore the learning process cannot be performed via the exact EM (Expectation Maximization) algorithm. Thus, we present an approximate EM algorithm using a collapsing method in which some Gaussians are merged into a single Gaussian. Tracking is performed through the forward algorithm based on Kalman filtering and the collapsing method. We also present a regularized smoothing, which plays a role of reducing jump changes between the training sequences of shape vectors representing complex-variable hand shapes. The recognition process is performed by the selection of a model with the maximum likelihood from some trained models while tracking is being performed. Experiments for several shape-changing hand gestures are demonstrated.