-9. Another unique feature of the transceiver system was a spectrum switch capability. The stable RZ and CS-RZ multiplexing operation was confirmed in the experiment. Once we adjust the 40 Gbit/s optical signal to CS-RZ format, the optical spectrum would maintain its CS spectrum shape for a long time to the benefit of the stable long transmission characteristics. In the recirculating loop experiment employing the OTDM MUX transceiver, the larger power margin was successfully observed with CS-RZ format than with conventional-RZ format, indicating that proper encoding of conventional-RZ and CS-RZ was realized with this prototype transceiver. In the case of CS-RZ format, the error free (BER < 10-9) transmission over 720 km was achieved with the long repeater amplifier span of 120 km." />


Development of 40 Gbit/s Transceiver Using a Novel OTDM MUX Module, and Stable Transmission with Carrier-Suppressed RZ Format

Yoshiharu FUJISAKU  Masatoshi KAGAWA  Toshio NAKAMURA  Hitoshi MURAI  Hiromi T. YAMADA  Shigeru TAKASAKI  Kozo FUJII  

Publication
IEICE TRANSACTIONS on Communications   Vol.E85-B   No.2   pp.416-422
Publication Date: 2002/02/01
Online ISSN: 
DOI: 
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Issue on 40 Gbit/s Optical Transmission Technologies)
Category: 
Keyword: 
optical communication,  optical time division multiplexing,  carrier-suppressed,  transceiver,  

Full Text: PDF(1.4MB)>>
Buy this Article




Summary: 
40 Gbit/s optical transceiver using a novel OTDM MUX module has been developed. OTDM (Optical-Time-Division-Multiplexing) MUX module, the core component of the transmitter, consisted of a optical splitter, two electro-absorption (EA) modulators and a combiner in a sealed small package. As the split optical paths run through the "air" in the module, greatly stable optical phase relation between bit-interleaved pulses could be maintained. With the OTDM MUX module, the selection between conventional Return-to-Zero (conventional-RZ) format and carrier-suppressed RZ (CS-RZ) format is performed by slightly changing the wavelength of laser-diode. In a receiver, 40 Gbit/s optical data train is optically demultiplexed to 10 Gbit/s optical train, before detected by the O/E receiver for 10 Gbit/s RZ format. Back-to-back MUX-DEMUX evaluations of the transceiver exhibited good sensitivities of under -30 dBm measured at 40 Gbit/s optical input to achieve the bit-error-rate (BER) of 10-9. Another unique feature of the transceiver system was a spectrum switch capability. The stable RZ and CS-RZ multiplexing operation was confirmed in the experiment. Once we adjust the 40 Gbit/s optical signal to CS-RZ format, the optical spectrum would maintain its CS spectrum shape for a long time to the benefit of the stable long transmission characteristics. In the recirculating loop experiment employing the OTDM MUX transceiver, the larger power margin was successfully observed with CS-RZ format than with conventional-RZ format, indicating that proper encoding of conventional-RZ and CS-RZ was realized with this prototype transceiver. In the case of CS-RZ format, the error free (BER < 10-9) transmission over 720 km was achieved with the long repeater amplifier span of 120 km.