|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
A Speech Enhancement Technique Using Kalman Filter with State Vector of Time-Frequency Patterns
Ryouichi NISHIMURA Futoshi ASANO Yoiti SUZUKI Toshio SONE
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E84-A
No.4
pp.1027-1033 Publication Date: 2001/04/01 Online ISSN:
DOI: Print ISSN: 0916-8508 Type of Manuscript: Special Section PAPER (Special Section on Acoustic Signal Processing) Category: Keyword: speech enhancement, Kalman filter, wavelet transform, time-frequency pattern,
Full Text: PDF>>
Summary:
A new speech enhancement technique is proposed assuming that a speech signal is represented in terms of a linear probabilistic process and that a noise signal is represented in terms of a stationary random process. Since the target signal, i.e., speech, cannot be represented by a stationary random process, a Wiener filter does not yield an optimum solution to this problem regarding the minimum mean variance. Instead, a Kalman filter may provide a suitable solution in this case. In the Kalman filter, a signal is represented as a sequence of varying state vectors, and the transition is dominated by transition matrices. Our proposal is to construct the state vectors as well as the transition matrices based on time-frequency pattern of signals calculated by a wavelet transformation (WT). Computer simulations verify that the proposed technique has a high potential to suppress noise signals.
|
|
|