|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Admissibility of Memorization Learning with Respect to Projection Learning in the Presence of Noise
Akira HIRABAYASHI Hidemitsu OGAWA Yukihiko YAMASHITA
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E82-D
No.2
pp.488-496 Publication Date: 1999/02/25 Online ISSN:
DOI: Print ISSN: 0916-8532 Type of Manuscript: PAPER Category: Bio-Cybernetics and Neurocomputing Keyword: feedforward neural network, generalization, training error, over-learning, admissibility,
Full Text: PDF>>
Summary:
In learning of feed-forward neural networks, so-called 'training error' is often minimized. This is, however, not related to the generalization capability which is one of the major goals in the learning. It can be interpreted as a substitute for another learning which considers the generalization capability. Admissibility is a concept to discuss whether a learning can be a substitute for another learning. In this paper, we discuss the case where the learning which minimizes a training error is used as a substitute for the projection learning, which considers the generalization capability, in the presence of noise. Moreover, we give a method for choosing a training set which satisfies the admissibility.
|
|
|