Multiscale Object Recognition under Affine Transformation

Wen-Huei LIN  Chin-Hsing CHEN  Jiann-Shu LEE  Yung-Nien SUN  

IEICE TRANSACTIONS on Information and Systems   Vol.E82-D   No.11   pp.1474-1482
Publication Date: 1999/11/25
Online ISSN: 
Print ISSN: 0916-8532
Type of Manuscript: PAPER
Category: Image Processing,Computer Graphics and Pattern Recognition
wavelet transformed extremal evolution,  Hopfield neural network,  matching score,  affine object recognition,  affine transformation,  

Full Text: PDF>>
Buy this Article

A method to recognize planar objects undergoing affine transformation is proposed in this paper. The method is based upon wavelet multiscale features and Hopfield neural networks. The feature vector consists of the multiscale wavelet transformed extremal evolution. The evolution contains the information of the contour primitives in a multiscale manner, which can be used to discriminate dominant points, hence a good initial state of the Hopfield network can be obtained. Such good initiation enables the network to converge more efficiently. A wavelet normalization scheme was applied to make our method scale invariant and to reduce the distortion resulting from normalizing the object contours. The Hopfield neural network was employed as a global processing mechanism for feature matching and made our method suitable to recognize planar objects whose shape distortion arising from an affine transformation. The Hopfield network was improved to guarantee unique and more stable matching results. A new matching evaluation scheme, which is computationally efficient, was proposed to evaluate the goodness of matching. Two sets of images, noiseless and noisy industrial tools, undergoing affine transformation were used to test the performance of the proposed method. Experimental results showed that our method is not only effective and robust under affine transformation but also can limit the effect of noises.