Single-Chip Implementation of a 32-bit Motor-Drive-Specific Microcontroller with Floating-Point Unit

Jin-Cheon KIM  Sang-Hoon LEE  Joo-Hyun LEE  Do-Young LEE  Won-Chang JUNG  Hong-June PARK  Im-Soo MOK  Hyung-Gyun KIM  Ga-Woo PARK  

IEICE TRANSACTIONS on Electronics   Vol.E82-C   No.9   pp.1699-1706
Publication Date: 1999/09/25
Online ISSN: 
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Issue on Integrated Electronics and New System Paradigms)
Category: Processors
motor drive,  32-bit microcontroller,  single-chip,  floating-point unit,  RISC,  CMOS VLSI,  

Full Text: PDF>>
Buy this Article

A 32-bit motor-drive-specific microcontroller chip was newly designed, implemented using a 0.8 µm double-metal CMOS process, and its feasibility was successfully tested by applying the fabricated microcontroller chip to a real AC induction motor drive system. The microcontroller chip includes a single-precision floating-point unit, peripheral devices for motor drive, and a memory controller as well as the SPARC V7 CPU. The pipeline scheme and the two-step multiplication method were used in the multiplier of floating-point unit for the best area and speed trade-off, using the standard cell library available for the design. The chip size is 12.7 12.8 mm2, the number of transistors is around 562,000, and the power consumption is 1.69 W at the supply voltage of 5 V and the clock frequency of 30 MHz. Both a standard cell library and a full-custom layout were used in the implementation.