Improvement in Contact Resistance Characteristics of Ag-Pd Alloy due to a Third Doping Agent

Terutaka TAMAI  Hiroshi OHSAKI  Tetsushi KAWANO  

IEICE TRANSACTIONS on Electronics   Vol.E81-C   No.3   pp.362-368
Publication Date: 1998/03/25
Online ISSN: 
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Issue on Electromechanical Devices and their Surface Science)
Ag-Pd system alloy,  Mg and Cr doping agents,  contact resistance,  contact failure,  

Full Text: PDF>>
Buy this Article

The alloy of Ag (40wt%)-Pd(60wt%) has been used in the electrical contacts of electromechanical devices due to its superior contact properties. There is currently, an increasing trend to decrease the size of electromechanical devices. However, it has been difficult to obtain a high contact force and the high restoring force of contacts, and these problems cause contact failures such as high contact resistance. In response to this problem, the alloy is overlaid with an Au layer which is not affected by oxide films. However, when the contacts are subjected to an unacceptable amount of mechanical shock, adhesion of the Au overlay occurs easily. In order to solve these difficulties, it can be proposed to cover the contact surface with high electric conductive oxide films. With this concept, the Au overlay should be unnecessary. In the present study, to reduce the high contact resistance of the Ag-Pd alloy contaminated with an oxide film, very small amounts of Mg and Cr were used in separate doping trials to the alloy. The improvement of contact resistance characteristics is the focus of the present study. Specimens of Ag (40wt%)-Pd(60wt%), Ag-Pd-Mg(0.1, 0.5 and 1.0wt%), and Ag-Pd-Cr(0.1 and 0.5wt%) were oxidized at elevated temperatures to accelerate the process of oxidation, and the growth kinetic law of oxide films grown on the surfaces were evaluated by ellipsometry. The effect of the oxide film on the contact resistance characteristics were then clarified. A marked improvement of the contact resistance caused by the oxide film was found for the Ag-Pd alloy with a Mg doping agent. However, for the Cr doping agent, a low contact resistance was not obtained as same as the Ag-Pd alloy itself.