A Single DSP System for High Quality Enhancement of Diver's Speech

Daoud BERKANI  Hisham HASSANEIN  Jean-Pierre ADOUL  

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E81-A   No.10   pp.2151-2158
Publication Date: 1998/10/25
Online ISSN: 
DOI: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Information Theory and Its Applications)
Category: Neural Networks/Signal Processing/Information Storage
Keyword: 
signal processing,  real time DSP systems,  communications,  diver's speech,  enhancement,  noise reduction,  VAD (voice activity detection),  speech coding,  

Full Text: PDF>>
Buy this Article




Summary: 
The development of saturation diving in civil and defense applications has enabled man to work in the sea at great depths and for long periods of time. This advance has resulted, in part, as a consequence of the substitution of helium for nitrogen in breathing gas mixtures. However, utilization of HeO2 breathing mixture at high ambient pressures has caused problems in speech communication; in turn, helium speech enhancement systems have been developed to improve diver communication. These speech unscramblers attempt to process variously the grossly unintelligible speech resulting from the effect of breathing mixtures and ambient pressure, and to reconstruct such signals in order to provide adequate voice communication. It is known that the glottal excitation is quasi-periodic and the vocal tract filter is quasi-stationary. Hence, it is possible to use an auto regressive modelisation to restore speech intelligibility in hyperbaric conditions. Corrections are made on the vocal tract transfer function, either in the frequency domain, or directly on the autocorrelation function. A spectral subtraction or noise reduction may be added to improve speech quality. A new VAD enhanced helium speech unscrambler is proposed for use in adverse conditions or in speech recognition. This system, implementable on single chip DSP of current technology, is capable to work in real time.