Fast Discrete Fourier Transform and Cyclic Convolution Algorithms for Real Sequences

Hideo MURAKAMI  

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E80-A   No.8   pp.1362-1366
Publication Date: 1997/08/25
Online ISSN: 
DOI: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on Digital Signal Processing)
Category: 
Keyword: 
the discrete Fourier transform,  real fast algorithm,  orthogonal expansion,  

Full Text: PDF(260.2KB)>>
Buy this Article




Summary: 
This paper introduces a new recursive factorization of the polynomial, 1-zN, over the real numbers when N is an even composite integer. The recursive factorization is applied for efficient computation of the discrete Fourier transform (DFT) and the cyclic convolution of real sequences with highly composite even length.