|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Analysis of Momentum Term in Back-Propagation
Masafumi HAGIWARA Akira SATO
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E78-D
No.8
pp.1080-1086 Publication Date: 1995/08/25 Online ISSN:
DOI: Print ISSN: 0916-8532 Type of Manuscript: PAPER Category: Bio-Cybernetics and Neurocomputing Keyword: back-propagation, momentum term, learning,
Full Text: PDF(464.7KB)>>
Summary:
The back-propagation algorithm has been applied to many fields, and has shown large capability of neural networks. Many people use the back-propagation algorithm together with a momentum term to accelerate its convergence. However, in spite of the importance for theoretical studies, theoretical background of a momentum term has been unknown so far. First, this paper explains clearly the theoretical origin of a momentum term in the back-propagation algorithm for both a batch mode learning and a pattern-by-pattern learning. We will prove that the back-propagation algorithm having a momentum term can be derived through the following two assumptions: 1) The cost function is En αn-µEµ, where Eµ is the summation of squared error at the output layer at the µth learning time and a is the momentum coefficient. 2) The latest weights are assumed in calculating the cost function En. Next, we derive a simple relationship between momentum, learning rate, and learning speed and then further discussion is made with computer simulation.
|
|