|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Scattering of Electromagnetic Plane Waves by a Perfectly Conducting Wedge: The Case of E Polarization
Michinari SHIMODA Tokuya ITAKURA Yuko YAMADA
Publication
IEICE TRANSACTIONS on Electronics
Vol.E78-C
No.9
pp.1298-1305 Publication Date: 1995/09/25 Online ISSN:
DOI: Print ISSN: 0916-8516 Type of Manuscript: PAPER Category: Electromagnetic Theory Keyword: scattering problem, conducting wedge, partition of scatterers, mutual field, Wiener-Hopf equation,
Full Text: PDF>>
Summary:
The two-dimensional scattering problem of electromagnetic waves by a perfectly conducting wedge is analyzed by means of the Wiener-Hopf technique together with the formulation using the partition of scatterers. The Wiener-Hopf equations are derived on two complex planes. Investigating the mapping between these complex planes and introducing the appropriate functions which satisfy the edge condition of the wedge, the solutions of these equations are obtained by the decomposition procedure of functions. By deforming the integration path of the Fourier inverse transform, it is found that the representation of the scattered wave is in agreement with the integral representation using the Sommerfeld contours.
|
|
|