
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Global Dynamic Behaviour of a Parallel Blower System
Hideaki OKAZAKI Hideo NAKANO Takehiko KAWASE
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E78A
No.6
pp.715726 Publication Date: 1995/06/25 Online ISSN:
DOI: Print ISSN: 09168508 Type of Manuscript: PAPER Category: Nonlinear Problems Keyword: piecewise linear vector fields, saddlerepellorspiral connection, boundary maps, formation of horse shoe map, one dimensional approximation analysis,
Full Text: PDF(971.5KB)>>
Summary:
A parallel blower system is quite familiar in hydraulic machine systems and quite often employed in many process industries. It is dynamically dual to the fundamental functional element of digital computer, that is, the flipflop circuit, which was extensively studied by Moser. Although the global dynamic behaviour of such systems has significant bearing upon system operation, no substantial study reports have hitherto been presented. Extensive research concern has primarily been concentrated upon the local stability of the equilibrium point. In the paper, a piecewise linear model is used to analytically and numerically investigate its manifold global dynamic behaviour. To do this, first the Poincar map is defined as a composition boundary map, each of which is defined as the point transformation from the entry point to the end point of any trajectory on some boundary planes. It was already shown that, in some parameter region, the system exhibits the socalled chaotic states. The chaos generating process is investigated using the above Poincar map and it is shown that the map contains the contracting, stretching and folding operations which, as we often see in many cases particularly in horse shoe map, produce the chaotic states. Considering the one dimensional motions of the orbits by such Poincar map, that is, the stretching and folding operations, a one dimensional approximation of the Poincar map is introduced to more closely and exactly study manifold bifurcation processes and some illustrative bifurcation diagrams in relation to system parameters are presented. Thus it is shown how many types of bifurcations like the Hopf, period doubling, saddle node, and homoclinic bifurcations come to exist in the system.

