105 A/cm2 and 2.5 A, respectively. The SuperMCM also provides matching circuits employing quarter wavelength striplines for driving Josephson LSI circuits at a microwave frequency, and DC bias circuits in the mullite multilayer ceramic substrate. The characteristics of the matching circuit is measured in the frequency range up to 3.6 GHz and the microwave current gain of 20 dB is obtained at 1.2 GHz, which revealed that the SuperMCM has the ability to drive the Josephson LSI circuits at more than 1.2 GHz clock speed." />


Off-Chip Superconductor Wiring in Multichip Module for Josephson LSI Circuit

Shigeo TANAHASHI  Takanori KUBO  Ryoji JIKUHARA  Gentaro KAJI  Masami TERASAWA  Munecazu TACANO  Hiroshi NAKAGAWA  Masahiro AOYAGI  Itaru KUROSAWA  Susumu TAKADA  

Publication
IEICE TRANSACTIONS on Electronics   Vol.E77-C   No.8   pp.1157-1163
Publication Date: 1994/08/25
Online ISSN: 
DOI: 
Print ISSN: 0916-8516
Type of Manuscript: INVITED PAPER (Special Section on Superconducting Devices)
Category: LTS
Keyword: 
multichip module,  superconductor wiring,  Nb,polyimide,  Josephson LSI,  

Full Text: PDF>>
Buy this Article




Summary: 
A superconducting multichip module using Nb/Polyimide on a mullite multilayer ceramic substrate has been developed for Josephson LSI circuits. The Nb/Polyimide stacked layers on the mullite multilayer ceramic substrate makes it possible to fabricate superconducting off-chip wiring for control signal line. We named the MCM "SuperMCM". The superconducting transmission line is designed to have the characteristic impedance of 14 Ω to match with the Josephson devices. The superconducting critical temperature, critical current density and critical current at a via hole are 8.5 K, 8.2105 A/cm2 and 2.5 A, respectively. The SuperMCM also provides matching circuits employing quarter wavelength striplines for driving Josephson LSI circuits at a microwave frequency, and DC bias circuits in the mullite multilayer ceramic substrate. The characteristics of the matching circuit is measured in the frequency range up to 3.6 GHz and the microwave current gain of 20 dB is obtained at 1.2 GHz, which revealed that the SuperMCM has the ability to drive the Josephson LSI circuits at more than 1.2 GHz clock speed.