Vdd), SPICE calculation results showed that the VCO tuning range was 2.25 GHz to 3.65 GHz and that the average VCO gain was approximately 1.4 GHz/V in the range of a control voltage (Vc) from 0 to 1 V. Simulation also indicated that at a Vdd of 1 V the CG locked on a 50 MHz external clock and generated a 3.2 GHz internal clock (=50 MHz64). The jitter and power dissipation of the CG at 3.2 GHz oscillation and a Vdd of 1 V were less than 8.75 psec and 50 mW, respectively. The typical lock range was 2.90 GHz to 3.59 GHz which corresponded to a pull-in range of 45.3 MHz to 56.2 MHz." />
|
|
|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Design of a 3.2 GHz 50 mW 0.5 µm GaAs PLL-Based Clock Generator with 1 V Power Supply
Tadayoshi ENOMOTO Toshiyuki OKUYAMA
Publication
IEICE TRANSACTIONS on Electronics
Vol.E77-C
No.12
pp.1957-1965 Publication Date: 1994/12/25 Online ISSN:
DOI: Print ISSN: 0916-8516 Type of Manuscript: Special Section PAPER (Special Issue on Multimedia, Analog and Processing LSIs) Category: Processor Interfaces Keyword: phase-locked loop (PLL), clock pulse generator (CG), voltage controlled ring oscillater (VCO), VCO gain, GaAs, MESFET, DCFL circuit, pull-in frequency, pull-in range, pull-in time, lock range, lock time, locked state,
Full Text: PDF>>
Summary:
A 3.2 GHz, 50 mW, 1 V, GaAs clock pulse generator (CG) based on a phase-locked loop (PLL) circuit has been designed for use as an on-chip clock generator in future high speed processor LSIs. 0.5 µm GaAs MESFET and DCFL circuit technologies have been used for the CG, which consists of 224 MESFETs. An "enhanced charge-up current" inverter has been specially designed for a low power and high speed voltage controlled oscillator (VCO). In this new inverter, a voltage controlled dMESFET is combined in parallel with the load dMESFET of a conventional DCFL inverter. This voltage controlled dMESFET produces an additional charge-up current resulting in the new VCO obtaining a much higher oscillation frequency than that of a ring oscillator produced with a conventional inverter. With a single 1 V power supply (Vdd), SPICE calculation results showed that the VCO tuning range was 2.25 GHz to 3.65 GHz and that the average VCO gain was approximately 1.4 GHz/V in the range of a control voltage (Vc) from 0 to 1 V. Simulation also indicated that at a Vdd of 1 V the CG locked on a 50 MHz external clock and generated a 3.2 GHz internal clock (=50 MHz 64). The jitter and power dissipation of the CG at 3.2 GHz oscillation and a Vdd of 1 V were less than 8.75 psec and 50 mW, respectively. The typical lock range was 2.90 GHz to 3.59 GHz which corresponded to a pull-in range of 45.3 MHz to 56.2 MHz.
|
|