Improved Contextual Classifiers of Multispectral Image Data

Takashi WATANABE  Hitoshi SUZUKI  Sumio TANBA  Ryuzo YOKOYAMA  

IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E77-A    No.9    pp.1445-1450
Publication Date: 1994/09/25
Online ISSN: 
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section of Papers Selected from the 8th Digital Signal Processing Symposium)
Category: Image Processing
contextual classification,  multispectral image,  remote sensing,  probabilistic relaxation,  

Full Text: PDF>>
Buy this Article

Contextual classification of multispectral image data in remote sensing is discussed and concretely two improved contextual classifiers are proposed. The first is the extended adaptive classifier which partitions an image successively into homogeneously distributed square regions and applies a collective classification decision to each region. The second is the accelerated probabilistic relaxation which updates a classification result fast by adopting a pixelwise stopping rule. The evaluation experiment with a pseudo LANDSAT multispectral image shows that the proposed methods give higher classification accuracies than the compound decision method known as a standard contextual classifier.