
For FullText PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.

Sampling Theorem for Spline Signal Space of Arbitrary Degree
Mamoru IWAKI Kazuo TORAICHI
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E77A
No.5
pp.810817 Publication Date: 1994/05/25 Online ISSN:
DOI: Print ISSN: 09168508 Type of Manuscript: Special Section PAPER (Special Section on Signal Processing and System Theory) Category: Keyword: digital signal processing, information theory, coding theory, spline functions,
Full Text: PDF>>
Summary:
In the bandlimited signal space, the mutual relation between continuous time signal and discrete time signal is expressed by the sampling theorem of WhittakerSomeyaShannon. This theorem consists of an orthonormal expansion formula using sinc functions. In that formula, the expansion coefficients are identical to the sample values of signals. In general, the bandlimited signal space is not always suited to model the signals in nature. The authors have proposed a new model for signal processing based on finite times continuously differentiable functions. This paper aims to complete the sampling theorem for the spline signal spaces, which corresponds to the sampling theorem of WhittakerSomeyaShannon in the bandlimited signal space. Since the obtained sampling theorem gives the simplest representation of signals, it is considered to be the most fundamental characterization of spline functions used for signal processing. The biorthonormal basis derived in this paper is considered to be a system of delta functions at sampling points with some continuous differentiability.


